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The question of whether or not to use a conservation form of the internal energy 
equation in computational magnetohydrodynamics is considered. Conservation errors 
resulting from both spatial and temporal difference methods are demonstrated, and 
means of eliminating the spatial errors and reducing the temporal ones are discussed. 
It is shown that only in the limit At + 0 can a nonconservation form of the internal 
energy equation be used without destroying in the finite difference equations any of the 
conservation properties of the magnetohydrodynamic partial differential equations. 

INTRODUCTION 

A survey of recent plasma physics journals and conference proceedings [l] 
indicates that there is a renewed interest in the computer simulation of current 
plasma experiments by numerical solution of magnetohydrodynamic partial 
differential equations. This renewed interest is, of course, due on the one hand to 
the rapid advances in computer technology which have made practical multi- 
dimensional calculations which would have been prohibitively expensive, even if 
suitable numerical methods had been available, in the early sixties when the 
pioneering work of Hain et al [2]. on one-dimension occurred. On the other hand, 
there is an apparent realization that magnetohydrodynamic models, even in cases 
where their conditions of applicability are not rigorously satisfied, can and indeed 
do predict and lead to an increased understanding of the dynamics of many 
experiments. 

The application of computational magnetohydrodynamics to the study of an 
experiment requires two steps. The first step is the selection of an appropriate 
physical model. Braginskii [3] has given a rather complete treatment of a two- 
component plasma, and most models for which numerical solutions have been 
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obtained can be considered subsets of the model given there. Roberts and Potter [4] 
survey a variety of additional models. 

The second step in the application of computational magnetohydrodynamics is 
the selection of a suitable finite difference approximation to the partial differential 
equations to be solved. The physical model will in general involve transport, both 
convective and diffusive, of physical quantities such as mass, momentum, energy, 
and magnetic flux. The fundamental numerical problems, particularly in Eulerian 
calculations, of numerical stability, diffusion, and dispersion are well documented 
and Richtmyer and Morton [5] give a complete summary. In general, the analysis 
of these problems is limited to linear differential equations. Additional nonphysical 
effects can be introduced when nonlinear equations are considered. For example, 
although magnetohydrodynamic equations conserve mass, momentum, and 
energy, these conservation properties are not necessarily retained in the finite 
difference approximation. “Conservative” difference approximations can be 
constructed, and the Lax-Wendroff [6] method, for example, has been used exten- 
sively in hydrodynamics. Roache [7] has suggested that the real significance of the 
original Lax [8] paper is not the actual difference method but the introduction of 
the “conservation form” difference equations which rigorously guarantee conserva- 
tion of mass, momentum, and energy. 

In magnetohydrodynamics, generalizations of the Lax-Wendroff method have 
been used by Freeman and Lane [9] and Potter [lo]. However, in many cases of 
interest, the magnetic energy can be orders of magnitude larger than the thermal 
and kinetic energy of the plasma. Hence, as Roberts and Potter have indicated 
without elaboration, when total energy is conserved, small errors in the magnetic 
field energy can lead to large errors in the thermal energy. Contradicting the 
experience of the hydrodynamicists, Roberts and Potter suggest the use of a non- 
conservative difference equation for thermal energy transport. 

The computational magnetohydrodynamicist is thus faced with a dilemma: 
whether or not to use a conservative energy transport equation. To resolve the 
dilemma, this paper examines finite difference approximations to both non- 
conservation and conservation forms of the internal energy equation. We show in 
detail the well-known result that the nonconservation equation can lead to a loss or 
gain of energy from the system considered. It is shown that the lack of conservation 
is due to both spatial and temporal differencing. On the other hand, we show in 
detail that an equation guaranteeing total energy conservation can lead to a 
nonphysical interchange of energy from one type to another. The nonphysical 
interchanges due to both spatial and temporal differencing are considered here. It 
is shown that the errors due to the spatial differencing can be eliminated quite 
easily and that those due to the temporal differencing can be minimized. Hence to 
a very satisfactory degree, conservative and nonconservative forms of the difference 
equations, as with the differential equations, can be equivalent. 
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PHYSICAL MODEL 

A simple one-dimensional magnetohydrodynamic model will be sufficient to 
illustrate the concepts to be discussed below. The model uses a continuity equation, 
an equation of motion, an internal energy equation, and Faraday’s law. The 
appropriate Eulerian differential equations as usually written are: 

In Eqs. (l)-(4) p is the mass density, v the fluid velocity, E the specific internal 
energy, B the magnetic field, p the material pressure, and 7 the electrical resistivity. 
For completeness, the model requires equations of state relatingp and q to p and E. 

A conservation equation is of course one which indicates that the time rate of 
change of a quantity within a volume is equal to the integral of a second quantity 
over the surface enclosing that volume. Equation (l), for example, gives 

i.e., the time rate of change of mass within the volume is equal to the net mass 
flow rate into the volume. Similarly, Eq. (2) expresses conservation of momentum 
and Eq. (4) expresses conservation of magnetic flux. Equations (1) through (4) can 
be combined to give an equation of conservation of total energy: 

4 (,x + ; ,ou2 + $, + & (pa + ; pus + pu + uB2 - VB $&) = 0. (5) 

The conservation equations have the general form 

g+g=o. (6) 
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BASIC NUMERICAL CONSIDERATIONS 

We consider only “cell-centered” finite difference approximations to Eqs. (1) to 
(5), so that each quantity including the velocity is defined at the same space-time 
point (a commonly used alternative is the definition of velocity at cell interfaces). 
The total mass, momentum, internal energy, magnetic flux, kinetic energy, magne- 
tic energy, and total energy within the finite difference domain at time tn are 

M” = C pjn Ax, (7) 

P” = C pjnvjn Ax, (8) 

E,” = C pjncjn Ax, (9) 

CD” = 1 Bin Ax, (10) 

Ekn = C BpjnUinVin AX, (11) 

EB” = C $Bj”Bj” AX, (12) 

ETn = EIn + E,” + EBn, (13) 

respectively, where pjn = p(t”, xj), etc., and the summation is over all values ot j; 
for our present purposes, boundary conditions which lead to “half-cell” inter- 
pretations can be ignored. 

A typical finite difference approximation to (6) would have the form 

(Q,“” - Qi”)/At + [(F+)i - (F-)j]/Ax = 0. (14) 

If, in addition, (F+)j = (F-),+1 , Eq. (14) is said to be conservative, for 

(C QT” AX - C Qj” Ax)/At = -(F+)j=~max + (F-)j=Jmin 3 (15) 

i.e., the time rate of change of the volume integral of Q is equal to the quantity F 
integrated over the surface enclosing the volume. 

SPATIAL DIFFERENCMG ERRORS-EXAMPLES 

To discuss errors involved in spatial differencing, we take the limit At -+ 0, so 
that semidiscretized equations, i.e., equations discretized in only the spatial dimen- 
sion, are considered, The semidiscretized form of (6) is 

aQi 1 (F+h - (F-lj = 0 
at Ax 

and (16) is “conservative” if (F+)j = (F-)j+l . 
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If p = 0 and B = 0, Eqs. (1) and (2) lead to 

-$- (; PD2) + & (; PUS) = 0, 

i.e., the differential equations conserve kinetic energy. 
for semidiscretizing (1) and (2) would be 

where the bar indicates an averaging operator, so that 

Qj+112 = <Qj+, + Qi>P. 

(17) 

One conservative method 

cw 

Equations (18) and (19) are correct to second order in Ax and conserve mass and 
momentum, and, as with their differential analogues, Eqs. (18) and (19) can be 
combined to give the time derivative of the kinetic energy. To calculate the time 
derivative, the following identities are needed: 

GGj*1II2 = Gaj*1,2 ;j*1,2 + %p4*1,2 svj*1,2, (21) 

vi = vj+1/2 - 8vj+1/2 = Vi-112 + SQj+l/2 9 (22) 

where 8 is a difference operator 

8Qi+1/2 = <Q~+I - QJB 

Combining Eqs. (18) and (19) and using (21) through (23) we find 

(23) 

* (f PjDli’) = v5 4 (P94 - 2 at = - 
vj2 +j h+1/2 -h-112 

AX 
+ 4j+1/2 + qj-l/2 

Ax (24) 

where 
- - 

fj*l/P = 4P jf1/2(21~*1/2)2 - 4PPOif1/2(SVi+112)2 + V5fl12 6yjzkl12 8(Pu)j%l12 u - (25) 

and 

qj*l/a = s(pv)~*l/2(sv~il/2)2~ (26) 

Because SQ M @x(aQ/aX), the last two terms of (25) are second order and there- 
fore (&+I,2 -j&)/Ax can be considered a second-order conservative approxima- 



124 IRVIN R. LINDEMUTH 

tion to the second term of (17). They’s in (24) are fluxes, and the changes in kinetic 
energy of cell j that they represent appear as opposite charges in an adjacent cell. 
On the other hand, the q’s in (24) are nonconservative, and, in general, even when 
summed over the entire domain, represent a nonphysical loss or gain of kinetic 
energy. We note that correct to fourth order 

which, at least for a@v)/ax < 0, is similar to thevon Neumann-Richtmyer [l l] “artifi- 
cial viscosity.” If (18) and (19) are used with a conservative approximation to (5), 
then, for a(pv)/ax < 0, the nonconservative terms of (24) indicate a nonphysical 
viscouslike heating, whereas, for ~(pu)/~x > 0, they indicate a nonphysical cooling 
and a corresponding entropy reduction. If an approximation to (3) is used, the 
nonconservative terms of (24) indicate a loss or gain of energy by the system unless 
they are specifically accounted for in the thermal energy equation. A result 
analogous to (24) for two-dimensional incompressible flow has been presented by 
Arakawa [12], who showed that finite difference approximations to the vorticity 
equation do not necessarily conserve kinetic energy. 

As a second example, consider the fourth term of (2) and the second term of (4). 
These terms represent the conversion of magnetic energy to kinetic and vice versa 
and considered together they conserve the sum of kinetic and magnetic energy, i.e., 

-g (; pv2 + ; B2) + g (uB2) = 0. 

Semidiscretized approximations analogous to (18) and (19) are 

a(Pv) 
at+ 

B,2-IF 
2Ax = 0, 

g+ Ax 
(a), - (a- = 0 

’ 

(27) 

(28) 

(29) 

where subscripts j + ?J and j - 4 have been replaced by + and -, respectively. 
Rewriting the second term of (28) as B+f6B+/Ax) + B-@B-/Ax), we find 

-- 
Ax & (; p2 + ; Be) + fi+B+B+ - id-B_ 

- au, SB, 6B+ - &I- 6B- 6B- = 0. (30) 

The second and third terms of (30) represent a conservative approximation to the 
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second term of (27); the last two terms are nonconservative. We note that correct 
to fourth order @a+ SB, 6B+ + 6v- 6B- GBJAx is an approximation to 

and, at least for au/ax < 0, is therefore similar to ohmic dissipation (see Eqs. (3) 
and (4)) with a resistivity q = -@x2(&.@x). A nonphysical conversion to/from 
kinetic and magnetic energy from/to thermal energy or a net loss/gain of energy 
from the system is indicated by the last two terms of (30). 

SPATIAL DIFFERENCING EQUATIONS 

Consider the following semidiscretized approximations to (1) through (4). 

Ax ?f$ + ij,jq --t fi$+6+ + Sp, + +- + & a& + B- sB- = O, 
(32) 

Ax +) yi- + j%:E”+ + p+‘+a+z+ + p+ sv, + p- sv- 

_ 2q+ @B+12 __- 
Ax 

2q- (sB_)2 = o 

Ax ’ 

Ax % + c+B+ - cJJ_ - 277, ~ SB- 
Ax + 2jj- -&- = O, (34) 

where again the subscripts j + 8 and j - $ are replaced by + and -, respectively. 
Without any specification of the operation indicated by the tilde (“), Eqs. (3 I)-(34) 
conserve mass, momentum, energy, and magnetic flux. In addition, Eqs. (31)-(34) 
have the following desirable “subconservation” properties which are not normally 
found in difference methods which automatically guarantee energy conservation by 
differencing Eq. (5) in a conservative form. 

(a) the approximations to a@v)/ax and +xJ)/~x conserve kinetic energy; the 
kinetic energy flux is ~“(6” - 6v2)/2; 

(b) the approximations to ap/i3x andp(&@x) conserve the sum of kinetic and 
thermal energies; the energy flux is $; 

(c) the approximations to B(aB/ax) and a(vB conserve the sum of 
kinetic and magnetic energies; the energy flux is i$B - B 6v SB; 

(d) the approximation to #B/~x)~ and (a/&) @B/ax) conserve the 
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sum of thermal and magnetic energies; the energy flux is -@(SB/jnx). 
Where the averaging operator (-) and the differencing operator 6 are indicated they 
are specifically required to maintain the properties (a)-(d) listed above. The tilde (“) 
indicates terms which can be treated somewhat arbitrarily without destroying the 
energy conservation properties; these terms, for example, can be determined from 
stability considerations. Unless (33) is replaced by an equation automatically 
guaranteeing energy conservation regardless of the form of (3 I), (32), and (34), any 
variation from (31), (32), and (34) requires an accompanying change in the internal 
energy equation (33) to assure energy conservation. A likely addition to (32) is, of 
course, an “artificial viscosity” such as used by von Neumann and Richtmyer. If 
an equation of the form (5) is used, energy conservation is still guaranteed if an 
“artificial viscosity” is used, but it would appear that a modificiation of the energy 
flux should still be incorporated. 

The various terms appearing in Eqs. (1) through (4) are representative of the 
terms appearing in multidimensional magnetohydrodynamic partial differential 
equations. Even when the equations are written in curvilinear coordinate systems, 
the analysis presented above of conservation properties of the spatial difference 
equations can be extended in a straightforward manner; the scale factors which 
appear in curvilinear coordinates increase the arbitrariness indicated in (31)-(34) 
by the tilde (“). The difference equations can be thus cast in a form which, in the 
limit dt + 0, assure conservation of mass, momentum, energy, and flux and in 
addition maintain all of the “subconservation” properties analogous to properties 
(a)-(d) discussed above, even though an internal energy equation analogous to (3) 
is used. Thus, as with their differential analogs, finite difference approximations 
to both conservation and nonconservation forms of the energy transport equation 
can, at least in the limit dt + 0, be equivalent. 

TEMPORAL DIFFERENCING ERRORS-EXAMPLE 

Using the spatial differencing indicated above we consider explicit finite difference 
approximations to Eqs. (3), (4), and (5) with the velocity set to zero. For (4) and (5) 
we have 

Bf - B 
--xii--- 

2 r?+ sB+- - +L- m- = o 
(Ax)2 ’ (35) 

p+~+ - Pi + B+B+ - BB _ 2 ij,B+ 6B+ - v&B- SB- = o 
At 2At WV 

, (36) 

respectively. In (35) and (36) the superscript + indicates values at time tn+l and all 
other values are at time P; in addition, unsubscripted quantities are values at xi and 
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the subscripts + and - replace j + & and j - 4, as before. Using the identity 
(B+)2 - B2 = 2B(B+ - B) + (B+ - B)2 and using (39, we find from (36) 

p+e+ - pE _ 
At 

2rj+@B+)2 _ WCW2 + (B+2;tB)2 = o. 
W2 W2 

(37) 

A finite difference approximation to (3) would have all terms of (37) except the 
fourth. Since the fourth term is always positive, it represents a nonphysical cooling 
resulting from the automatic conservation of energy guaranteed by Eq. (36). Had 
an implicit formulation been used in (35) and (36) the sign of the fourth term of (37) 
would have been negative; i.e., an implicit conservation formulation results in 
nonphysical heating. We note, however, that a Crank-Nicholson-like method 
(B -+ B = (B+ + B)/2 in the spatial difference equations) eliminates the non- 
physical term. 

TEMPORAL DIFFERENCE EQUATIONS 

To demonstrate in general terms the errors introduced by conservative differ- 
encing of (5), we write difference approximations to (1) through (5) as follows. 

Kp’ - ,44 + 4+ + G = 0, (38) 

[(p+v+ - ,4/4 + F2+ + G, = 0, (39) 

KP+~+ - p+W + r;,+ + Ga = 0, @Q) 

[(B+ - B)/At] + F4+ + G4 = 0, (41) 

p+c+ - pe + p+v+vf - pvv + B+B+ - B2 
At 2At 2At + &+ + G, = 0, (42) 

where the F's are implicit quantities and the G’s are explicit quantities. The F’s and 
G’s are spatially differenced quantities, and for (40) and (42) to be equivalent in the 
limit At -+ 0, we require 

Fz+ + B+FJ+ + v+F2+ - [(v+)"/2]F,+ = Fs+, (43) 

G2 + BG, + vG, - (v2/2)G1 = G6. (44) 

From (41) we obtain 

B+B+ - B2 B++BB+-B 
2At =-Ii--= 2 

-B+F4+ - BG, f (B+; B, (Fa+ - G3, 

(45) 
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and from (38) and (39) 

p+v+v+ - pvv 
2At 

v + v+ cp+v+ - pc) vu+ p+ - p 
2 At 2 At 

-v+;F,+ - UC, + ‘+‘;F,1- j y G, 

+ (v+ - 4 
2 

(UC, - G, - v+Fl+ + Fs+). (46) 

Substituting (43) through (46) into (42) we find 

p+e+ - pE 
At -+- F3+ + G3 + @+ ; ‘) (vG, - Gz - v+Fl+ + Fz+) 

+ (B+-B)(F+-G4)z() 
2 4 . 

The last two terms on the left-hand side of (47) represent the nonphysical heating/ 
cooling which results from temporal differencing; or, they indicate the energy 
loss/gain which would result if Eq. (40) were used instead of (42). The error terms 
are O(At) because of the time differences v+ - v and B+ - B and hence become 
smaller as the time step is reduced. The error can be reduced to O(AP) if the spatial 
derivatives are written as a time averages so that G = F(P) where F+ = F(t”+l). The 
error is then 

; At2 [g (% -w) + g% + o(Aty]; 

the error discussed here is only the nonphysical heating/cooling, not, of course, the 
full truncation error. 

Most of the nonphysical terms which appear in (47) are removed if Crank- 
Nicholson-like differencing is used. If all G’s are zero and the F’s satisfy 

Fs+ + !?$? r;k+ + ?jk F2+ - (‘+ ; ‘)” Fl+ = F5+, (48) 

so that (40) and (42) are equivalent, we find from (44), using the first equalities of 
(45) and (46), 

KP+e+ - pc)/At] + F3+ - [(v+ - ~)~/8] Fl+ = 0. (4% 

The last term of (49) is nonphysical but is O(At2). 
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The second order (in dt) methods discussed above would appear to be desirable 
from an accuracy point of view, but they are implicit, and solution of fully implicit 
multidimensional difference equations are well known to be sufficiently complicated 
to prohibit their use in most cases. Lindemuth and Killeen [13] have reported 
using an alternating-direction-implicit (ADI) [14] method for solving time-depen- 
dent two-fluid two-dimensional magnetohydrodynamic equations which alternately 
uses implicit and explicit finite difference equations for the spatial derivatives in 
each of the two dimensions. Such an alternating direction procedure is considerably 
less complicated than a fully implicit two-dimensional method. An alternating- 
direction-implicit approximation reduces in the one-dimensional case to the use of 
the exact same values for the spatial derivatives on two consecutive time steps, i.e., 
for (0, 

W” - $)/At] + F:+l = 0, 

KPj”‘” - p;+l)/At] + Ff” = 0. (51) 

In (50) F*+l is implicit because it involves unknown quantities at the new time 
~+l, whereas in (51) it is explicit because it involves known quantities at the old 
time fn+l. With equations analogous to (50) and (51) for (2), (4), and (5), we find, 
using (47), that an equation guaranteeing total energy conservation leads to 

P 
n+23+2 _ n n 

2At 
P E + g+i + (un+lET+l - G+3 cvfi+2 _ 2vm+l + un) = 0. 

4 
(52) 

The last term in (52) represents a nonphysical heating or cooling. Because 
on+2 - 2un+l + un is an approximation to At2(~2v/W), the error in (52) is second 
order. The result (52) extends directly to AD1 methods in two dimensions. When 
an equation analogous to (42) guaranteeing total energy conservation is used, 
alternating-direction-implicit time differencing used with appropriate spatial 
differencing will lead to a second-order nonphysical heating or cooling. On the 
other hand, if an equation analogous to (40) is used, a second-order (in At) loss or 
gain of energy from the system will occur. The O(At) errors introduced in AD1 
calculations on one time step are approximately canceled (some are exactly can- 
celed) on the following time step. 

Equations (47), (49), and (52) indicate that the conservation errors due to time 
differencing cannot be fully eliminated. If an equation analogous to (40) is used, 
energy conservation checks are useful to indicate whether or not the time step has 
been maintained at a sufficiently low value to obtain the required accuracy even 
when numerical stability considerations would have allowed a larger time step. 

581/18/z-z 
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SUMMARY AND CONCLUDING REMARKS 

Errors in the numerical solution of magnetohydrodynamics equations can be 
divided into two classes. The first class is the well-documented stability, dispersion, 
and diffusion errors which are present even when the equations reduce to linear 
ones and which lead to the nonphysical transport of the various quantities. This 
paper has discussed a second class of errors, the errors which result from the non- 
linearity of the equations and which lead to nonphysical losses and gains of energy, 
or interchanges from one form of energy to another. The sources of this second 
class of errors have been shown to be both the spatial and temporal finite difference 
methods used. Without completely specifying a set of difference equations, this 
paper has shown that the second class can be eliminated only in the limit Lilt -+ 0. 
In addition it has been shown that appropriately chosen implicit or alternating- 
direction-implicit methods, in addition to their well-known enhanced numerical 
stability, can reduce the second class of errors to second order in the time step dt. 

The analysis presented in this paper indicates why, for most finite difference 
methods which have been implemented in magnetohydrodynamics, the approxima- 
tions to the conservation and nonconservation forms of the internal energy equation 
are not equivalent even though their differential analogues are equivalent. Because 
of the possible existence of nonphysical energy interchange mechanisms, it would 
appear that the use of methods whose accuracy has been proven in conservation 
form, such as Lax-Wendroff, Lapidus smoothing [ 151, flux-corrected transport [16], 
to name a few, should be done cautiously if a nonconservation form of the internal 
energy equation is to be used; necessary mechanisms such as “artificial viscosity” 
(and perhaps even “artificial resistivity”) should be identified and undesirable 
mechanisms, such as those which reduce entropy, should be removed. 

It is difficult to estimate the magnitude of the errors discussed here, and, of 
course, the errors become smaller as the finite difference space-time mesh is 
refined. We have incorporated most of the ideas presented above in the computer 
code ANIMAL--A New (Alternating Direction) Implicit Magnetohydrodynamic 
ALgorithm-which also uses some of the techniques reported earlier [13, 171. The 
incorporation of the ideas presented here has given ANIMAL an improved capa- 
bility to calculate accurately a wide class of problems. Because ANIMAL maintains 
the “subconservation” properties introduced above, we feel we have a code which 
obtains numerical solutions which retain more of the properties of the magneto- 
hydrodynamic partial differential equations than any previously reported code. 
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